

Abstract— The present work demonstrates the mechanisms,

programming design choices and paradigms of developing an

Android-backed online turn-based social game application. Each

step of the programming process is detailed, and the underlying

implemented concepts and reasonings for the different modules

are explained using the Model – View – Controller architectural

pattern. Software engineering design choices are compared and

exemplified at each stage of the development phases, giving

suggestions for improving the logic behind such a distributed

service. This paper also shortly presents insights on the usage of

an online cloud database (Firebase, from Google) in order to

handle player data in real-time using JSON format.

Keywords — object-oriented programming, Android, Java,

MVC, development paradigms, distributed systems, social game

I. INTRODUCTION

N today’s world, technology is playing a leading role in

people’s lives. Humans are now used to have

synchronous verbal connections between people living at a

far distance from each other (sometimes on two opposite

sides of the globe), and, with the use of the internet, people

can also text or see each other, which gives a possibility to

make them feel like they would be together.

Despite these incredible opportunities, many contacts are

still weakening or even being lost. In an ideal world, the next

step would be that people do not just keep in touch through

long conversations, but even through activities that requires

only a few minutes of one’s precious time.

The idea behind our thinking is that “coldened

relationships” could be well mitigated with the use of

technologies that are most of the time with their users and

providing fast user-device interaction [4]. The most operated

tools for such purposes are smartphones [5].

The goal of this research paper is to present the ideas and

findings behind creating a game that works as an element of

interaction between people not being in physical proximity;

and a social game which is meant to be an enhancer of

human-to-human communications, not a replacer of it.

II. PRODUCT DESCRIPTION

UR application is meant to combine a board game (e.g.

Snakes and Ladders) with socializing games (e.g.

Manuscript received June 3, 2018.

S. Sbîrnă is with the Technical Faculty of IT and Design (student at
Innovative Communication Technologies and Entrepreneurship - “ICTE”),

Aalborg University Copenhagen, 15 A.C. Meyers Vænge Street, Denmark.

L. S. Sbîrnă is with the Faculty of Sciences (Chemistry Department),
University of Craiova, 107I Calea Bucuresti Street, Craiova.

“Truth or Dare”, “I have never...”), where there would be

two players for each game, playing on separate devices and

exchanging pictures, videos, and information between each

other, as they advance on the board. For that, we employ a

server communicating with each of the clients, which is

capable of storing and exchanging data whenever necessary.

 In order to keep all the information about the users and

their games, we have saved them in an online database that

would allow retrieving of data in real time, in order to have

two users playing a game without big delays in data

exchange. There are a lot of possible solutions for such a

database, but we decided to use Firebase from Google [1], as

it is a cloud based solution with an online platform, which

would allow multiple users to connect at the same time, to

save or retrieve information [1]. As our application also

needs to store photos, the integration of the online database

with “Firebase Storage” is a suitable solution for our

implementation. A snapshot of our database structure is

shown in figure 1.

Figure 1. A snapshot of the Firebase Database web interface, showing the

structure and value of variables in a JSON key-value format

III. FEATURE IMPLEMENTATION

HIS chapter aims to provide a detailed look on the core

Android-compatible ideas and methods used within the

implementation of the application.

The chapter will be divided into two main parts,

corresponding to the two major development stages: the

“general features” implementation phase and the “gameplay

and testing” implementation phase. The main differences

between them lay in the focus of the programming tasks.

Sebastian Sbîrnă, Liana Simona Sbîrnă

Programming design and object-oriented development paradigms of

an Android-based distributed social game system

I

O T

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 407

A. “General Features” Development Phase

 In the following paragraphs, a guided insight on the

execution flow of the game will be presented, so that the

readers of this paper can have a clear idea about what we

are trying to achieve as coding approach. The application’s

logic flow is supposed to behave in this manner:

The first time a user is starting the application or if the

application is deleted from the memory and needs to be

restarted, the user is greeted with a login screen, in which

one can input its email and password in order to connect

online to our database and retrieve all of its data. On the

screen, there is one “login”, one “create account” and one

“forgot password” button. If the user does not yet have an

account, he/she can press “create account” to register, case

in which he/she will be asked to enter a desired username, a

valid email, and a password. The application then goes on

and generates a random unique UUID for every newly-

created player, to have its own space inside the database.

 The user is then redirected to the main screen of the

application, also called the “game list” screen. Here, the

user can see all the current games that he is playing in, in a

detailed and orderly manner. One can always know in

which games his turn has arrived by looking at the text on

the button next to each game: if it appears as “PLAY”, then

it is his turn; while if it appears as “VIEW”, it is not his turn

and he doesn’t need to take any action yet. Regardless of the

state of the button, if the user clicks it, it will enter the game

that he has clicked on, and he can either perform certain

actions such as: roll a dice, input a question, etc., or he can

see the state of the board (shown in fig. 2): where each

player is positioned, the current field card that is in play,

and what information is until now inside the card. We will

discuss field cards more in the next paragraphs.

There are five types of field cards that have been defined

for a game: Truth, Dare, Minigame, Gameplay, and

Wildcard. Whenever a player rolls a dice and lands on a

field on the board, a Dialog pop-up appears in the form of a

“card”. Depending on the field, a different card layout will

be presented. All the field types allow a player to postpone

its action, however the game will be put to a standstill until

the player decides to take action. When describing the

possible actions on these cards, we will refer to the player

whose turn it is as the “current player”, and to the player

that is not having its turn as the “other player”:

• A Truth card shows to the current player a question taken

from the database and allows him to answer to the

question or postpone it until a later date. The other

player will also see the current question, and the screen

will show “waiting for answer”, if the current player

has not yet answered the question.

• A Dare card shows to the current player a dare taken

from the database, and gives the current player a

possibility to send a photo of him/her doing the dare.

The photo is saved into the database only until the dare

is marked as completed, which makes sure that the

users have seen the media.

• A Gameplay card gives the current player the possibility

to roll a 6-sided-dice and a special game boon is

activated depending on what the player has rolled, such

as advancing fields or switching positions with the

opponent. A text appears on the Dialog activity telling

the player a description of the special effect that has

been activated automatically.

• Each Minigame that our game offers needs to implement

a different layout, due to the differences between

different minigames. To give an example, for a “Rock-

Paper-Scissors” minigame, both players have three

buttons on the screen, corresponding to the three

available choices: rock, paper, and scissors. After both

players make their decision, the screen shows a text

specifying what each has selected, along with if that

player has won/lost. The winning player gets different

in-game boons, depending on the minigame played.

• A Wildcard card allows the current player to type in a

question that he/she wants answered, along with the

type of answer that is wanted: text or photo. In

principle, the implementation is similar to the Truth and

Dare cards combined together, with the difference that,

instead of having a question selected from our database,

the player itself writes the question.

Figure 2. A typical screen of a gameplay session between two players,

showing the players’ positions and tokens; along with the different fields
that are available: Green – Truth; Red – Dare; Blue – Minigame; Yellow –

Gameplay; Purple – Wildcard;

The implementation of the gameplay inside the

application has a turn-based approach and depends very

much on four variables that hold the state of a game within

the database: “isPlayer1Turn”, “hasPlayerRolledTheDice”,

“isPlayer1AdditionalActionRequired”, along with

“isPlayer2AdditionalActionRequired”. It is worth

mentioning that the turn-based flow of the gameplay has

major turning points, which affect what type of content is

shown on the screen.

408

An activity diagram, presented in figure 3, was drawn up

to show the various activities involved in a single game turn

of our application. For the user, the process of playing a

turn follows a straightforward way of progression.

Figure 3. Architecture diagram of the system,
based on the Model-View-Controller structuring method

• If it is the device owner’s turn, then:

o If the player has not rolled the dice yet, then the

current player is at the beginning of the turn,

needing to advance on the board. In that case, a

semi-transparent window would appear over the

board, having the text “Roll” written in the center of

the screen. When the user taps that, a pseudo-

random number generator inside the code will

generate a pick from 1 to 6, and the result would be

shown on the screen in the form of an image with a

dice face having as many dots on it as the number

that was rolled. If the user taps again on the screen,

the player’s token will advance on the board to the

new position, after which a new corresponding field

card will be in play.

o If the player has already rolled the dice, the current

player has already advanced on the board. In that

case, the user is at the point where he needs to give

some input to the current field card (by answering a

question, typing a sentence, pressing a button, etc.),

but has not yet done so.

• If it is the other player’s turn, then the actions that the

current player can take is visualizing the board, along

with visualizing the current field card that is in play,

what information is so far written “inside” it, and

perhaps performing some additional action on the card

that is already in play, only if requested.

 The gameplay continues in this manner until one of the

players arrives at the Finish field, case in which both

players receive a pop-up Dialog showing, respectively,

“You won, congratulations!” or “You lost this time, but

thank you for playing”. After both players close this pop-up,

the game is removed both from the database and from the

two players’ game list. Any two players are only allowed to

have one single game between themselves in the database at

a time.

 Continuing, we will describe the components which

compose the applications’ code, with respect to the MVC

(Model-View-Controller) architecture, based on which most

Android applications are designed [2]. The architecture

diagram in fig. 4 reveals the overall organization and

structuring of our system.

Figure 4. Architecture diagram of the system,

based on the Model-View-Controller structuring method

A Model holds the data and “business logic” of the

application; View objects construct the User Interfaces of

the application; while Controller objects contain the

“application logic” and link the view and the model objects

together. Controllers are made to respond to various events

triggered by the user interfaces and to control the flow of

data between model objects and view objects. In that sense,

“in Android, a controller class is typically a subclass

(extension) of the classes: Activity, Fragment, or Service”

[3] Since this is a service-based mobile application (making

use of the Firebase database cloud solution), the database

has been modeled and deployed on the provider side,

making use of the higher storage capacities available; while

the client side uses algorithms to process specific data

locally and, afterwards, update the data to the database

accordingly [7].

1) Model object description

 The application development started with implementing

model classes for our objects inside the application. These

objects formed the basis of our object-oriented

programming approach. Some examples are: Board, Truth,

Player, Field, etc.

409

To give an example, the Player class has been designed

using the singleton development pattern, meaning that there

can only be one instantiated Player for the duration of the

whole lifecycle of the application. This is to make sure that

player-personal data are globally accessible from any part of

the program, but also to prevent having multiple players

from being logged on at the same time on the same device.

This influenced our choices of interacting with the data of

the other players from the database, since, instead of locally

storing all the data about another particular player with

whom we are playing a game, we are using the database to

extract the necessary information and, if needed, to check

for updates of its content.

 Here we will present a short description of the most

important models developed for our application:

• Player: used to keep all the necessary user’s data

available throughout the whole application. This

includes the user UUID, its first name, last name, email

address, game list and game list IDs.

• Game: class responsible for the Game data initialization

and for the instantiation and initialization of the Board-

specific object for each Game. Here we set which

positions inside the board are going to be of type Truth,

Dare, Minigame, etc. Right now, there is only one

possibility for the board layout, since it has been

hardcoded which type of fields correspond at which

positions on the board. However, a further development

would be to have a random field type generator for the

board layout, so that every time there would be a

different distribution of the field types across the game

board.

• Board: keeps track of which fields are present inside a

game-specific board, and what position contains what

field type.

• Field: abstract class, which is the parent of all the five

field types: Truth, Dare, Minigame, Gameplay and

Wildcard. It defines the signature for two important

methods that are needed inside each field type:

getType() and getDrawableId(). getType() returns an

ID that is unique to a specific field type, so as to

identify that field by the specific ID (for example, a

Truth Field is of has the ID of 1, while a Dare has the

ID of 2). getDrawableId() stores, based on each child

class of Field, the ID from the “R.java” class that links

it to its board field image from the “drawable” folder,

which will be shown on the screen.

2) View objects and layouts description

 The View objects inside an Android application are

intrinsically connected to certain layouts that define the user

interface of that application [6]. All our layouts are

constructed using the XML language that Android is

working with [6]. Some of the layouts in our game, already

available at the end of the “general features” phase, are:

• activity_login is the first screen in our user interface,

where the user will input its email address and

password in order to login to the game database. In case

the user does not have an account, he/she also has the

option to register to the game by press the button

“Create Account”, which sends the user to another

screen, namely: activity_registration.

• activity_registration is the screen that users will see when

attempting to register in our game. The user needs to

input a desired username, email and password, after

which he/she will automatically be taken to the game

list screen.

• activity_game_list and game_list_recycler_view form the

main game screen, which consists of a list of all the

games that the device owner is currently playing in.

Each game inside the list has, as identifiers: the

username of the other player that is engaged in the

game; a square image with the username’s initial

centered on it, and filled with a color depending on that

initial; and a button that reads either “Play” or “View”,

depending on whose turn it is inside the game. A

floating “+” button provides a way to create a new

game, after which the player is taken to a screen which

requests inputting either the username or the email

address of the friend that will join the game.

• board_layout is the layout that defines how the game

board looks like for all the games of the player. It

contains 31 fields (including “Start” and “Finish”), uses

different colors and image resources for each of the

possible fields, and allows for the player-chosen tokens

to be represented on it as part of the gameplay. The

device owner’s token would always be positioned on

the top-left quarter of its particular field on the device

owner’s screen, while the competing player would be

always positioned on the bottom-right quarter of its

own field.

• navigation_drawer_header and drawer_menu are the

parts that make possible to have a hamburger menu in

all screens of the application. This menu would allow

for quick access to the game settings, game list, friend

list, achievement list and game history of the player.

The header of the drawer menu would show the full

name of the player and an image at choice.

3) Controller object description

 Control objects inside our application are the different

activities that provide a mechanism to put together data into

the views of the application, and, subsequently, populate the

user interface with information meaningful to the user.

In most cases, each of these activities is designated to

“draw up” a new “screen” or “part of the screen” inside the

application. Due to the complexity of the tasks that each

activity needs to accomplish, we will describe most of the

gameplay activities in the second half of this chapter, when

we reach the second phase of development. We will provide

here a description of some of our activities already-

implemented at the end of phase one, in the order that they

show up on the user interface in a general use-case scenario:

• LoginActivity is the activity bound to the first layout that

appears on the screen, activity_login. It instantiates the

database objects inside the memory; defines listeners

410

for the various buttons; provides field validation for the

email and password fields; validation for internet

connection; and starts the service to retrieve

information from the database. The activity then checks

inside the database if the user already exists, and, if so,

redirects him/her to the game list, where his/her

personal games information would be further retrieved

from our database and displayed on the device screen.

• RegistrationActivity is launched in case the user decides

to register into the system. In that case, the activity

provides field validation for the four fields that the user

needs to input, and provides a way to save the new user

inside the database, if it doesn’t already exist.

Afterwards, the user is redirected to the application’s

login screen.

• GameListActivity defines the current list of games that

the user is playing, and provides a way to create a new

game via the “+” floating button in the top right corner

of the screen. From a technical perspective, this activity

only provides the layout in which the game information

cards would be put in place, while the next presented

activity provides the actual data retrieval and screen

update functionality.

• GameListRecyclerViewAdapter is the activity

responsible of populating the game list layout with

information. This Activity uses a CardView to show the

different games in a card format, giving memory

benefits by not reconstructing any more data than the

screen can show, unless the user scrolls in search for it;

and, also, a custom ViewHolder arrangement.

• GameActivity is the activity that inflates the board layout

on the screen, sets up each of the field views with the

corresponding image resource (depending on what field

type it is), and handles most of the board update and

turn coordination. More on this activity will be detailed

in the next subsection of this chapter.

• RetrieveInfoFromDatabase, is a service that is running

in the background all the time even if the application is

not opened, so it can retrieve data from the database. In

particular, it listens for changes in the player’s game, so

it can send a notification that it is his/her turn.

B. “Gameplay and Testing” Development Phase

 After the foundations of our application were

implemented, along with establishing a main outline about

how the gameplay of the application would be internally

represented, we set out to develop the features that turn our

application into a “game”, namely: the different fields, their

behaviors, and the flow of gameplay.

 The first step that was taken in this direction has been to

create a framework that allows creation and restoration of

the unique state of a game using information received from

the database, so as for a user to be able to “enter” a specific

game with a person and see all the latest changes, while also

saving the changes he/she makes inside his/her turn. This

was done by using Bundle objects, which consist of key-

value mappings that can be transferred from one activity to

another by sending them together with an Intent. Every time

a game is started, the program checks against some key

values that, if present, would return essential information

about the reconstruction of the game, and would be saved

accordingly inside some local variables.

The GameActivity is the “main” class of a game, here

being present the core functions that restore, update the

board and establish a turn-based flow inside a game. The

method play() inside this class deals with the testing of

certain conditions, in order to make the turn-based approach

possible. It allows to specify which field is being played

right now, appends a visual indicator stating this, checks for

dice roll necessity, and, if there is a played field at that

moment and it is clicked, allows the application to select the

right “Field” type object to be instantiated, out of all the

possibilities. All the further gameplay, relating to how a

player interacts with the different field types and with their

content, is done separately for each Field type, inside their

own classes.

 After that, we went on to implement each separate field

individually, in a logical order: Truth; Dare; Wildcard;

Minigame; respectively, Gameplay.

 The classes have been chosen to be Fragments, more

specifically: extensions of the DialogFragment class, due to

the properties that Fragments have upon the application

layout. Since a Fragment is attached to an Activity, and

becomes a part of that Activity, transitions between different

screen layouts is much easier from Activity to Fragment than

from Activity to Activity. Also, due to the possibility of

listening for the result of other activities that have been

called not just by the main activity, but also by any of its

attached fragments, this allowed for a way to implement a

global function that would deal with Camera return type

intents, and what to do after a picture has been taken with

the camera and should be uploaded to the storage solution.

The onCreateDialog() method in each of the

DialogFragments is where the gameplay mechanics and

checks are hidden. If “is[...]AdditionalActionRequired” is

true, then it means that the field card that is currently in play

needs additional input from the current player. An example

could be in the execution of a Wildcard field: The player

who received the card would type in a question, after which

turn ownership would be switched to the other player, so that

he can input an answer. In that case, we can think that

“additional action is required for the card before the turn can

end”, which is why “is[...]AdditionalActionRequired” will

be true. This prevents checking for e.g. if the player is at the

beginning of a new turn.

“is[...]AdditionalActionRequired” will also be true before

the removal of a card from play, when it is needed for one of

the players to confirm that he/she has seen the contents from

the other. This is our method of making sure internally that

both players have seen what has happened during the last

moves of the opposite player, and such an approach was

made possible through turn-based integration. Therefore,

“confirming” a card, or, more precisely, “confirming” that

you have seen what the other has done, is usually the last

exchange of information within a Field type card, after

which it disappears and a new one is played.

411

 Our gameplay is built around fewer, major “turn

changes”, which can be known as “player turns”, and many

smaller exchanges of information at a Field card’s level,

involving sending data back-and-forth to each other’s player,

which can be considered as a “player pseudoturns”. An

example will be given in order to better illustrate the

concept: when both players have just finished exchanging

information on a card, then it has been confirmed by both of

them, and afterwards has disappeared from the screen

(meaning that the placeholder variables in the database have

been reset to values neutral to the game), it will be then clear

that another “player turn” has begun. A player turn is also

generally characterized by being the only time where one

can roll a dice in order to advance on the game. However,

after a turn has started, there can be many “pseudoturns”

from one player to the other, depending on how the specific

card gameplay requires. For example, if a Truth field has

been rolled, during the first pseudoturn, the user receiving it

will answer to the question that is present on the screen, after

which, if he clicks “Submit” on the card layout, the database

information is updated and the pseudoturn changes to the

other player, where he/she will confirm that they have seen

the written answer to the given question, while the actual

“player turn” doesn’t change. In this respect, inside the code

and the database values, one can think of “player turn” as

“who of the players received this card first”; while, for

pseudoturns, one can speak about “who of the players is

requested action to be taken now”. Please note that this is all

spoken purely from a coding point-of-view, as it is of no

concern to the actual players themselves, since such a

distinction is never mentioned during the actual gameplay.

In order to properly adjust to the diverse behavior that

each of the Field card types was bringing into the game

(especially considering that each of them has different rules

as to when a pseudoturn is changed and what happens during

each pseudoturn), we created multiple layouts for every

DialogFragment, each representing how the contents on the

screen should look like, considering a sequence of data

checks that marks a change in pseudoturns.

 These layouts have been divided into “active” frames, and

“passive” frames, depending on the type of action requested

on the screen. An “active” frame is defined by having at

least one element that will change the state of the game

when activated (for example, having an input text field and a

pressing a Submit button that will send the data from the

input field to the database); while a “passive” frame is

defined as having no state-changeable elements and is being

shown on the screen only if that player is not requested any

action. A case where an “active” frame would be shown

would be when a user wants to answer the question inside a

Truth field, while a case of “passive” frame usage is when a

player is waiting for the other one to send a photo inside a

Dare field, but would like to see again the dare text that his

friend has received, in order to remember it better. After

each turn or pseudoturn of a game, the information for the

game must be saved in the database, which then fires an

event in the background service that is responsible for

retrieving game information for each user.

 The number of “active” and “passive” frames that a Field

card is required to have depends especially on the nature of

the gameplay inside it, on the recyclability of the layout in

the context of gameplay, and on the number of pseudoturns

that the card is expected to have before it “disappears” from

the field.

IV. CONCLUSION

HE paper has presented many of the programming

paradigms behind the implementation of an Android

application/game created to make people get to know each

other better and share parts of their lives, regardless of the

physical distance between them.

 The general development was separated in two phases,

each with its own specific focus. The underlying code

followed the MVC architecture [2], as a way of better

organizing and separating tasks between the different

classes and layouts.

 In the “general features” development phase, we have

presented ideas behind the design of core classes that make

up the login and registering into the game, listing initiated

games, playing and viewing the different game elements on

the screen.

 In the “gameplay and testing” development phase, we

have presented in-depth designs upon the gameplay

elements that enable our application to be played in a turn-

based manner.

 Anyone who would follow a similar implementation

pattern, or who is interested in building an application with

a similar purpose can benefit from reading the findings of

our project, which concluded successfully with a working

Android social online game.

V. REFERENCES

[1] Firebase; App success made simple, 2016. Available at:

https://firebase.google.com [Accessed: 05 March 2018].

[2] T. Cornez, R. Cornez, Android Programming Concepts,

First edition, Jones & Bartlett Publishers, 2015.

[3] B. Phillips, C. Stewart, B. Hardy and K. Marsicano,

Android Programming, The Big Nerd Ranch Guide,

Second edition, Pearson, 2015.

[4] S. Sbirna, H. B. Bakalov, K. R. Babos and F. J. Eriksen,

ITCOM 15 – Group 2, P3 project, Semester Project,

Aalborg University, 2016.

[5] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,

R. Govindan and D. Estrin, Diversity in smartphone

usage, in Proceedings of the 8th international

conference on Mobile systems, applications, and

services: ACM. pp. 179-194, 2010.

[6] Android; Layouts, 2017. Available at:

https://developer.android.com/guide/topics/ui/declaring-

layout.html [Accessed: 03 March 2018].

[7] H. J. La and S. D. Kim, Balanced MVC Architecture for

Developing Service-Based Mobile Applications, 2010

IEEE 7th International Conference on E-Business

Engineering, Shanghai, pp. 292-299, 2010.

T

412

